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P6.1
Loupes

1. Derive Eq. (6.1) using the geometry shown in Figure 6.1.
2. Calculate the magnification of a loupe which consists of a thin lens with

a focal length of f=25mm. Please consider the following cases

• Alter the distance LLP between the observer’s eye and the loupe from
LLP =0mm to 100mm.

• Place an object in the focus of the lens. How does the resolution of the
eye change? At first, determine the magnification and resolution of an
eye without visual aids for the near point at the typical near viewing
distance snv = 250mm. At this distance from the loupe, the eye has a
focal length of 17mm. The density of rods in the fovea is approximately
100/mm.

• Why are loupes with a magnification of 100× not available? Where is
the limit?

3. The field of view dfov of a simple magnifier lens can be calculated via

dfov =
dL

LLPD∗L
, (6.79)

in which D∗L is the effective optical power of a magnifier lens given by

D∗L =
DL − 1/s′

1− LLP/s′
. (6.80)

Derive Eq. (6.79) and determine an approximation for dfov as a function
of only the power of the lens.

4. Calculate the parameters of Table 6.1 for a bi-convex spherical lens with
a refractive index of n= 1.7. Is the assumption of a thin lens justified?
What differences can you observe?

5. How can βL and dfov be derived for each magnifier lens with DL and dL
given an optimum working condition?

Solution:

1. We want to derive Eq. (6.1) for the angular magnification of a loupe in front an
eye which is given by

βL =
tan γ′

tan γ
= −DLsref +Asetsref (1−DLLLP) . (6.1)

Using Figure S6.1, we can write

βL =
tan γ′

tan γ
=
h′I,L/LIP

−h0/sref
=
h′I,L
h0
· sref
LIP

. (S6.1)
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Figure S6.1 (a) Ray diagram illustrating the magnification of a magnifier loupe. (b) Object
observed without a lens.

Here, we note that sref < 0 (by definition) and LIP < 0, whereas LLP > 0. The
magnification of a lens is given by Eq. (A15) and can be expressed by means of
the imaging equation of a lens (A14) by making use of DL = 1/f ′ (note that
s′ = LLP + LIP < 0). Thus, we have

βlens =
h′I,L
h0

=
s′

s
= 1−DLs

′ . (S6.2)

Assuming that the accommodation of the eye (Chapter 2, Eq. (2.9)) is equal to the
apparent distance of the image, we can write

Aset =
1

LIP
.

Thus, we obtain with Eqs. (S6.1) and (S6.2)

βL =
tan γ′

tan γ

=
h′I,L
h0
· sref
LIP

= βlens ·
sref
LIP

= (1−DLs
′)
sref
LIP

= (1−DLs
′)Asetsref

= Asetsref −AsetDL(LLP + LIP)sref

= Asetsref −AsetDLLLPsref −AsetDLLIPsref

= −AsetDLLIPsref +Asetsref −AsetDLLLPsref
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and finally
βL = −DLsref +Asetsref(1−DLLLP) .

In the special case that we have sref = snv = −250mm and LLP = f ′ = 1/DL,
we obtain for the nominal magnification of a loupe

βL,nominal = −DL(−250 mm) +Asetsref

(
1−DL

1

DL

)
= DL · 0.25 m =

DL

4D
. (6.2)

2. The (angular) magnification is defined by the ratio of the tangent of the viewing
angles with and without the magnifier

β =
tan γ′

tan γ
,

in which γ is the visual angle without the loupe and the object at the reference
viewing distance. We set sref = −snv = −250mm and obtain

tan γ =
h0
sref

.

With the lens equation (A14) for the magnifier lens

1

s′
− 1

s
=

1

f ′
,

we can write the tangent of the angle γ with magnifying lens, image distance s′
(note: s′ < 0, since the image is virtual), and loupe distance from the eye LLP as

tan γ =
h′I,L
LIP

=
h′I,L

s′ − LLP
.

Next, we use for the magnification of the lens Eq. (6.2) and find

β =
tan γ′

tan γ

=

(
h′I,L

s′ − LLP

)
sref
h0

=

(
f ′ − s′

s′ − LLP

)
sref
f ′

.

If the object is located in the focal plane, s = f ′ = 25mm and thus s′ → −∞.
With an accommodation for the unaided eye at near viewing distance sref =

−snv = −250mm, we calculate

β0 = lim
s′→−∞

(
f ′ − s′

s′ − LLP

)
· sref
f ′

= lim
s′→∞

(
f ′/s′ − 1

1− LLP/s′

)
· sref
f ′

=
snv
f ′

= 10× .
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Table S6.1 Magnification for different values of the eye-loupe distance LLP.

LLP (mm) β

0 11
10 10.6
25 10 (nominal magnification)
50 9
100 7

When the distance between loupe and eye has an arbitrary value LLP, but the eye
still accommodates to the reference viewing distance sref , we have

s′ = LLP + sref . (S6.3)

The magnification thus yields

β =
tan γ

tan γ0

=

(
f ′ − s′

s′ − LLP

)
· sref
f ′

= 1− sref
f ′
− LLP

f ′

= 1 + β0 −
LLP

f ′
.

Specific values of the magnification for different distances are given in Table S6.1.

The given density of rods of 100/mm corresponds to an average distance between
rods of ∆x = 0.01mm on the retina. At the near point of the eye with the given
focal length of the eye feye = 17mm, we obtain the smallest resolvable angle
determined by the rod density:

γmin,eye =
∆x

feye
= 0.000588 rad = 2.02′ .

For a loupe with magnification β, this angle is magnified by a factor of β. Thus,
the minimum resolvable angle using a loupe of magnification β becomes

∆γmin,loupe =
γmin,eye

β
.

The pupil of the eye is about 3.6 mm behind the cornea inside the eye. Therefore,
there cannot be any loupe with a focal length f ′ < 3.6mm, as such a loupe could
simply be not close enough to the eye pupil. At best, f ′ = 5mm is imaginable,
and this corresponds to a magnification of β0 = −sref/f ′ = 50× under the
assumption of an non-accommodated observing eye.
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More critical however is another limitation. In order to have a sufficient field of
view, the loupe should have a clear diameter of dlens ≈ 1 cm. With an aperture
ratio of dlens/f ′ = 0.5, this corresponds to a focal length of 20mm. In this
case, we will get significant imaging errors (aberrations). For dlens/f ′ = 1 and
β0 = 25×, the lens will almost have a spherical shape.

3. We start from Eq. (S6.2), that is,

βlens =
s′

s
= 1−DLs

′ .

Since the maximum size of the virtual image d′fov of the object is limited by the
size of the lens aperture dlens, we can write (note that s′ < 0)

dlens
d′fov

=
LLP

LLP − s′

and further
d′fov =

dlens(LLP − s′)
LLP

.

The maximum size of the virtual image d′fov corresponds to a maximum field of
view at the object of

d′fov
dfov

= βlens = 1−DLs
′ .

As a consequence, we obtain Eq. (6.79) given by

dfov =
d′fov

1−DLs′
=
dlens(LLP − s′)
LLP(1−DLs′)

=
dlens
LLPD∗L

,

where we used Eq. (6.80), that is,

D∗L =
1−DLs

′

LLP − s′
=
DL − 1/s′

1− LLP/s′
.

We can find an approximation for the case that the object is in the focal plane of
the loupe ( s = f ′ in 1/s′ − 1/s = 1/f ′) so that s′ → −∞. From Eq. (6.80) and
the transition D∗L → DL, we obtain

dfov =
dlens
LLPDL

.

Therefore, when the object is located at the focal plane, the field of view dfov is an
inverse function of the power of the lens, which means that the higher the power
of the loupe the smaller the field of view.

4. We use Eq. (A12) for a bi-convex thin lens with n = 1.7 to calculate the radii r1,2
of the lens surfaces. Moreover, we use Eq. (6.1) to calculate the real magnifica-
tion in the case of the optimum working condition. From Table S6.2 follows that
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Table S6.2 Optical parameters for some bi-convex lenses.

DL f ′(mm) r1,2 (mm) βL,nominal βL βL (experimental)
(see Eq. (see also
(S6.1)) Table (6.1))

6 167 58 1.5 1.95 2.1
8 125 44 2.0 1.78 2.7
12 83 29 3.0 2.34 3.5
16 62 22 4.0 3.66 3.25
20 50 17 5.0 4.64 3.1

for high DL, the lens radius approaches the focal length. As the lens becomes
“thick”, the thin lens approximation does not hold anymore. Hence, we also see
that the experimentally obtained magnifications differ from the calculated ones.
Another reason for the differences is that the loupes in Table 6.1 contain aspheric
lenses.

5. Optimum working conditions are :

1. Object is located in the focal plane of f ′L = LLP and the eye is relaxed during
viewing.

2. The reference viewing distance |sref | equals the typical near viewing distance
snv = 25 cm.

P6.2
Stereoscopic vision

An observer has an interpupillary distance of PD = 62mm. He uses a tele-
scope with 8× magnification whose objective lens is located at a distance
of 115mm from the eye. How much is the stereoscopic vision improved
compared to the case of a “naked” eye without visual aids? Compare the
minimum stereo angles εmin for both cases.

Solution:

We start with calculating the stereoscopic effect by observation with the “naked” eye.
For this purpose, we use the schematics in Figure S6.2.
The stereoscopic depth perception (given by the parameter ∆Leye) is the ability of
the eye to detect a difference in depth or distance between two object points O1 and
O2. The minimum stereo angle εmin (experimentally observed to be in the order of
10′′) is another expression of this depth perception. From Figure S6.2, we can easily
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Figure S6.2 Geometry illustrating the optical concept of stereoscopic vision.

derive the following relations:

θ =
PD

Leye
,

θ − εmin =
PD

Leye + ∆Leye
. (S6.4)

By elimination of θ (under the assumption that εmin � PD/Leye), we can easily
derive Eq. (2.18) or, equivalently, Eqs. (2.19) and

∆Leye =
εmin · L2

eye

PD
. (6.14)

Now, we want to see how a binocular system like a binocular telescope affects the
stereoscopic depth perception. This may happen either by a change of the interpupil-
lary distance to a new stereo-base distance b (Figure S6.3) or by the magnification of
the system which effectively decreases the apparent distance of the observed object.
Let us calculate the combined effect. For this purpose, we take a look at Figure S6.4
in which we have depicted one imaging channel of the binocular system, which is
sufficient to consider due to symmetry. Shown in the new stereo base b/2, we can see
the object and image position Oi and O′i, respectively, and the image distancesL′ and
∆L′. It should be noted that object Oi represents the edges of an off-axis object with
size b/2. Such a transversally extended object is de-magnified by an afocal telescope
system by a factor of 1/β. This seems to be counter-intuitive, as the angular mag-
nification of an afocal telescope is β. This can be best explained by the following
reasoning: If an object at large (but finite) distance L with size h0 is imaged through
a telescope, the image will be at finite (but large) distance L/β2. Consequently, since
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Figure S6.4 Graph to determine the increase of the stereoscopic depth perception when
the stereo base b is increased.

the angular magnification of the telescope is given by β, the transverse magnification
hI/h0 equals 1/β.
Thus, any object points Oi in Figure S6.4 are de-magnified by 1/β, which means that
the corresponding image points O′i are located at a distance of b/2β from the visual
axis of the binocular telescope. Using the geometry in Figure S6.4, we find similar
to the procedure for the “naked” eye

θ′ =
b

β · L′ and

θ′ + ∆θ′ =
b

β · (L′ + ∆L′)
.
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From this, we can easily derive an equivalent formula to Eq. (6.14) (by using the same
assumptions), that is,

∆L′ ≈ β ·∆θ′ · L′2

b
.

If we define the stereoscopic magnification Γstereo as

Γstereo = ∆θ′/εmin

and use the relations

L′ =
Leye

β2
and ∆L′ =

∆Leye

β2
,

we finally obtain

∆θ′

εmin
=

b ·∆L′ · L2
eye

β · PD ·∆Leye · L′2

=
b

β · PD
·
L2
eye

L′2
· ∆L′

∆Leye

=
b

β · PD
· (β2)2 · 1

β2

= β · b

PD
. (S6.5)

For the given parameters b = 155mm, PD = 62mm and β = 8×, we find a stereo-
scopic magnification of Γstereo = 14.8×, which is quite noticeable. Compared to
the “naked” eye, the stereoscopic vision (stereoscopic depth perception) is improved
by a factor of approximately 15.

P6.3
Stereoscopic depth perception

Why is the stereoscopic depth perception an important quantity in micro-
surgery? Please refer to the diameter of the nerve fibers, blood vessels,
and so on. Compare the stereoscopic depth perception of eyes without vi-
sual aids and surgical microscopes. Typical parameters of surgical micro-
scopes are εmin = 48.5 × 10−5 rad, b= 26mm, fobj = 200mm – 400mm,
ftub =125mm, fep =20mm, and Γ=0.4 to 1.

Solution:

The size of blood vessel vary enormously from a diameter of about 25mm in the
aorta to only 8 µm in the capillaries, which allows the red and white blood cells as
well as various serum proteins to pass through. Nerve fibers have typical diameters
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of 1.5 µm to 20 µm. Therefore, for microsurgery, a very good stereoscopic depth
perception (i.e., a small value of ∆Lmic) is of great importance to allow the surgeon
to get a good resolution of microstructures inside the human body. For illustration,
we use Eq. (6.15) given by

∆Lmic =
εminf

2
obj

bΓ(ftub/fep)± εminfobj
.

Using the data given for the system and Eq. (6.15), we obtain

∆Lmic = 12 ... 119 µm ,

depending on the objective’s focal length fobj and the zoom magnification Γ.
Again for comparison, the naked eye allows in standard viewing distance a depth
resolution of ∆Leye = 45 µm. With a microscope, we can thus achieve a 4× better
depth resolution, again depending on the objective’s focal length fobj and the zoom
magnification Γ.

P6.4
Achromat design

1. An achromatic lens system shall be designed for the focal length f =

300mm with crown glass N-FK51A for the (front) positive element and
flint glass N-SF6 for the negative element (Table 6.9). The cemented
surface should be planar. Calculate the focal lengths and the radii of cur-
vature of the two partial lens elements.

2. How large is the distance of the green (λ = 587 nm) from the blue-red
(λ=486 nm; λ=656 nm) image plane (secondary chromatic aberration)?
How large is the distance between the red and green image plane for a
simple lens made of the glass K7? Where does the image for the blue
wavelength lie in this case? How large is the relative improvement in the
axial chromatic difference overall?

3. Compare the curvatures of the image shell (Section A.1.6.4) for the achro-
matic lens system and the individual lens element. Which system is more
favorable? Why can the achromatic lens system not be flattened with re-
gard to its image shell? Let us use the Rayleigh length zR = λ/NA2 as
a measure for the depth of field. How large may the field angle of the
achromatic lens system be in order to obtain a sharply defined image, if
the incident bundle is collimated to a diameter of 8mm and only the field
curvature is considered?
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Solution:

1 2

N-FK51A N-SF6

Figure S6.5 Achromatic lens system consisting of a convex N-FK51A lens and a concave
N-SF6 lens.

1. For illustration, we use the sketch in Figure S6.5. The total refractive power Dtot

of the cemented system is
Dtot = D1 +D2 . (S6.6)

The achromatization condition is given by

D1

ν1
+
D2

ν2
= 0 . (S6.7)

Solving these equations yields the individual refractive powers

D1 =
Dtot

1− ν2/ν1
= 4.76 D ⇒ f1 ≈ 210 mm ,

D2 =
Dtot

1− ν1/ν2
= −1.43 D ⇒ f2 ≈ −699 mm ,where

ν =
ne − 1

nF′ − nC′
.

The focal length of a lens element with one plane surface is given by Eq. (A12),
from which the radius of the lens can be derived as

r = f · (n− 1) .

For the positive lens/front surface, this results in

r1 ≈ 210 mm · (1.48656− 1) ≈ 100 mm .

For the negative lens/back surface, we have

r2 ≈ −699 mm · (1.80518− 1) ≈ −563 mm .
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It is instructive to calculate the design of the achromat if the lower dispersive
crown glass N-FK51A is replaced by a slightly more dispersive K-7 positive el-
ement while the higher dispersive flint glass is substituted by the somewhat less
dispersive N-KZFS11 negative glass element. The values for a total focal length
of 300mm are

f1 ≈ 89 mm ,

f2 ≈ −127 mm ,

r1 ≈ 89 mm · (1.51112− 1) ≈ 46 mm ,

and for the negative lens/back surface

r2 ≈ −127 mm · (1.63775− 1) ≈ −81 mm .

Obviously, the focal lengths and radii are much shorter, which generally leads to
higher aberrations (imaging errors).

2. We can calculate the secondary chromatic aberration by starting with the focal
length for yellow light withλ = 578 nmwhich is ftot = 300mm. The focal length
for red and blue light must be identical in accordance with the achromatization
condition. The value is calculated again from Eq. (A12) and follows as

1

fred,blue
=
n1,656 − 1

r1
+
n2,656 − 1

r2
= 0.00333227 mm−1

⇒ fred,blue = 300.1 mm .

The difference to ftot is the remaining chromatic aberration, which follows as
∆s′ =

∣∣fyellow − fred,blue∣∣ = 100 µm.
For an individual plano-convex lens element made of K-7, the secondary spectrum
calculation yields

r = f · (nd − 1) = 153.3 mm ,

fred =
r

nc − 1
= 301.5 mm , and

fblue =
r

nF − 1
= 296.6 mm .

Here, the secondary chromatic aberration is 1.5mm and −3.4mm, respectively,
that is, it is approximately between 15× and 35× larger.

3. One imaging error of every lens is that the image does not lie in a plane but on a
curved shell (field curvature). We can draw the schematic diagram of the curved
image shell of an achromat as can be obtained by numerical aberration calculations
(see Section A.1.6.4).
The middle image shell lies somewhat further away from the paraxial image plane
than the so-called (model) Petzval shell (Figure S6.6), whose radius of curvature
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Figure S6.6 Formation of the field curvature imaging error with an achromat.

rP can be calculated by using aberration theory according to

1

rP
= −

∑
j

1

njfj
. (S6.8)

For the individual plano-convex K-7 lens, we obtain for yellow light with a wave-
length of 587 nm a radius of curvature of the Petzval shell of

rP = −453.3 mm .

For the achromat consisting of N-FK51A and N-SF6, the radius of curvature is

rP = −
(

1

312.1 mm
+

1

−1262.3 mm

)−1
= −414.6 mm .

The individual lens and the achromat almost have the same field flattening.
If we want to flatten an achromat, the following condition resulting from rewriting
Eq. (S6.8) must be met in addition to Eqs. (S6.6) and (S6.7):

D1

n1
+
D2

n2
= 0 . (S6.9)

This yields the additional condition
ν1
ν2

=
n1
n2

(S6.10)

to be met by the chosen types of glass. We can easily verify that the condition
(S6.10) is not fulfilled for our selected glasses, which means that for these glasses
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the field curvature of the achromat cannot be corrected.
When we look at Figure S6.7, at which different glass materials are characterized,
condition (S6.10) yields the red lines. Meaningful glass combinations – which
are as far apart as possible in order not to make the factor in Eq. (S6.8) too unfa-
vorable – lie between the green boundary curves. A possible solution is given by
the blue line or the two glass types of the blue points.

Figure S6.7 Refractive index versus Abbe number for a wavelength of λ = 597nm for
different types of glass.

If we select a pair of glasses (e.g., glass 1 with ν1 = 44, n1 = 1.84, glass 2 with
ν2 = 38.5, n2 = 1.61), we can verify that the field is almost flat (rP ≈ 0). The
design then yields lenses with

f1 ≈ 37.5 mm and f2 ≈ −42.9 mm ,

which represent relatively short focal length lenses with other aberration conse-
quences. In general, achromatization and field flatness are thus together not easily
achieved with a two-lens system.

Let us finally calculate the maximum field angle that can be allowed by the
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achromat to still obtain a sharp image. We start with the numerical aperture of
the achromat given by

NA = sin(u) =
D

2f
= 0.0133 .

This yields a depth of field (Section A.2.1.6 and Eq. (6.13)) of

∆zdof =
λ

NA2
= 3.3 mm .

At the image height h, the sagitta ∆z of the image shell with radius of curvature
rC is approximately

∆z =
h2

2rC
= ∆zdof .

If the radius of curvature is approximately equated to the Petzval radius, this leads
to

h =
√

2∆zdof |rP| = 52.3 mm .

This, in turn, corresponds to a field angle of

tan(w) =
h

f
= 0.172

⇒ w ≈ 10◦ .

P6.5
Apochromat design

Design a three-element apochromat with a focal length of f = 300mm. As
a third glass N-KZFS11 is available. Compare the resulting performance
(regarding chromatic aberration) with the achromat in Problem P6.4 and a
single lens made of K-7. For calculation of the secondary spectrum, you can
use the n(λ) dependence given by the Sellmeier equation

n2(λ)− 1 =
B1 λ

2

λ2 − C1
+

B2 λ
2

λ2 − C2
+

B3 λ
2

λ2 − C3
(6.81)

with the Sellmeier coefficients Bi and Ci given in Table 6.10.

Solution:

A three-element apochromat system is depicted in Figure S6.8. The total power of
this system is given by

Dtot =

3∑
i=1

Di , (S6.11)
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and the achromatization condition by

3∑
i=1

Di
νi

= 0 . (S6.12)

A condition for the disappearance of the secondary spectrum is given by

3∑
i=1

Pi · Di
νi

= 0 . (S6.13)

In the latter condition (S6.13), we used for the so-called partial dispersions of mate-
rials

Pi(λ)λ,F = Pi(λ) =
ni(λ)− ni,F
ni,F − ni,C

(S6.14a)

and
νi,d =

ni(587nm)− 1

ni(486 nm)− ni(656 nm)
=

ni,d − 1

ni,F − ni,C
, (S6.14b)

with λ being the third wavelength in addition to λF and λc to be corrected.

1

2

3

N-FK51A N-SF6

N-KZFS11

Figure S6.8 Configuration of an apochromatic lens system made of N-FK51A, N-KZFS11,
and N-SF6

Table S6.3 Sellmeier coefficients of optical glasses1). Data taken from [9] in Chapter 6.

Type of Glass B1 B2 B3 C1 C2 C3

N-FK51A 0.971247 0.216901 0.904652 0.004723 0.015358 168.68133

N-SF6 1.779317 0.338150 2.087345 0.013371 0.061753 174.01759

K-7 1.127355 0.124412 0.827101 0.007203 0.026984 100.38459

N-KZFS11 1.332224 0.289242 1.151617 0.008403 0.034424 88.431053

1) Ci are given in µm2, and the wavelength in the Sellmeier equation has to be entered in units of µm.
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Equations (S6.11) - (S6.13) can be solved for the individual Di via

D1 =
P2 − P3

P2 − P1
· ν1
T
· Dtot

D2 =
P3 − P1

P2 − P1
· ν2
T
· Dtot

D3 =
P1 − P2

P2 − P1
· ν3
T
· Dtot (S6.15)

in which
T =

ν1 · (P2 − P1) + ν2 · (P3 − P1)

P2 − P1
− ν3 . (S6.16)

It is necessary that T has a large value. The value of T can be understood as the
“Abbe number” of an artificial glass combined of the materials of the two positive
elements (see also [14] in Appendix A).
From Eqs. (S6.15) and (S6.16), we obtain for the third wavelength λg = 436 nm with
Pi(λ)λ,F = Pi(λ = λg)λ,F = P igF = Pi:

P1 = 0.535824 ,

P2 = 0.560442 ,

P3 = 0.615699 ,

T = −77.319 .

With this results, we get for the individual lens elements:

f1 = +122.39 mm ,

f2 = −168.64 mm ,

f3 = +915.04 mm .

We start with the first element (N-FK51A) and make it bi-convex; again we assume
thin lenses. Then the radii of the first lens element can be calculated to

Rc1,front = −Rc1,back = 2f1 · (n1,d − 1) = 119.11 mm ,

Rc2,front = Rc1,back = −119.11 mm ,

Rc2,back = −
(

1

f2(n2,d − 1)
− 1

Rc1,back

)−1
= 1109 mm ,

Rc3,front = Rc2,back = 1108.56 mm ,

Rc3,back = −
(

1

f3(n3,d − 1)
− 1

rc2,back

)−1
= −2196.78 mm .

As we can see, the second lens (N-KZSF11) will be bi-concave with the second sur-
face being relatively flat, while the third lens (N-SF6) will be again bi-convex with
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relatively flat surfaces. This most likely will not be the optimum design for minimum
aberrations, but here we just want to illustrate the effect of an apochromatic correc-
tion.
With the parameters above, we can calculate the total power of the lens triplet:

Dtot(λ) =

3∑
i=1

Di =

3∑
i=3

(ni(λ)− 1) ·
(

1

Rci,front
− 1

Rci,back

)
. (S6.17)

This leads to a total focal length of

ftot(λ) =
1

Dtot(λ)
.

In Figure S6.9, we plot ∆ftot(λ) = ftot(λ)−ftot,design. As we can see, the longitu-
dinal chromatic aberration is in the order of a few microns. If we compare this curve
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0.43 0.555 0.7050.455 0.5050.48 0.53 0.58 0.605 0.63 0.655 0.68

Δftot (λ)

Figure S6.9 Difference of the total focal length ftot(λ) and the designed focal length
versus the wavelength λ.

with the results from Problem P6.4 (Figure S6.10), we find indeed a remarkable per-
formance improvement. Please note that in Figure S6.10 the longitudinal chromatic
aberration of the apochromat is multiplied by a factor of 100. In reality, it is thus
about 100× smaller than an achromat.
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Figure S6.10 Chromatic (longitudinal) aberration. Comparison of ∆ftot(λ) with the result
from Problem P6.4.
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P6.6
Varioscope

1. Calculate a simple varioscope (with a negative and a positive lens ele-
ment) for a working distance range from 200 – 400mm. Also calculate
the related focal lengths. Why should the negative lens component be the
front lens?

2. How large is the working distance? What focal lengths do you suggest for
the individual lens elements?

3. Can chromatic correction be simultaneously achieved? Select two suit-
able materials.

4. Calculate the magnification of a surgical microscope for vitro-retinal
surgery which uses a wide-angle lens with 125D and an objective lens
with fobj =200mm. All other parameters shall be standard. Assume the
lens to be located 20mm above the eye.

• Where is the intermediate image plane?
• In order to keep the microscope in a fixed position after insertion of the
wide-angle lens, what is the required change of the focal length of the
varioscope?

• How does the situation change, if the lens with 125D is replaced by a
60D lens?

5. Calculate for the case of a fundus-imaging microscope the necessary var-
ioscope focal length change (Figure 6.14) when the wide-angle aspheric
lens (D=+60D or +125D) for fundus viewing is placed into the obser-
vation path. The working distance of the system should be 200mm.

Solution:

1. Approximate solution with dI = 0:
In the case of position I with a large working distance, d = dI = 0 approximately
applies. With f1 > 0, f2 < 0, and a working distance of s′I = 400mm, we have

1

s′I
=

1

fI
=

1

f1
+

1

f2
. (S6.18)

In the case of position II with a working distance of s′II = 200mm, dII + a = f1,
and the assumption that the focal length fII is approximately 40% longer than the
working distance, we have

1

1.4s′II
=

1

fII
=

1

f1
+

1

f2
− dII
f1f2

. (S6.19)

The lens equation for imaging through the second element yields (negative lens,
virtual image)

1

s′II
− a

f1 − dII
=

1

f2
, (S6.19)



Optical Visualization, imaging, and Structural Analysis 21

position I 

position II 

d

f1

a

s‘l

s‘ll

f1 f2

Figure S6.11 Scheme of a varioscope with corresponding geometric parameters.

where
1

f2
=

1

s′I
− 1

f1
.

Inserted in Eqs. (S6.18) and (S6.19) and f2 eliminated yields

1

1.4s′II
=

1

f1
+

(
1− dII

f1

)(
1

s′I
− 1

f1

)
,

1

s′II
− 1

f1 − dII
=

1

s′I
− 1

f1
.

Elimination of dII from both equations leads to a focal length of

f1 = (1.4− 1)
s′Is
′
II

s′I − s
′
II

= 160 mm .

From Eq. (S6.19), we obtain

f2 =
f1s
′
I

f1 − s′I
= −266.7 mm ,

and from Eq. (S6.19) it follows that

dII = f1 −
f2s
′
II

f2 − s′II
= 45.714 mm .
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From Eqs. (S6.18) and (S6.19), the effective focal lengths follow as

fI = 400 mm ,

fII = 280 mm .

The negative element is the front lens which allows the design of a smaller vario-
scope size (diameter).

2. More realistic solution with dI 6= 0 :

In this solution, we have a non-negligible lens thickness in case I and thus a sep-
aration of dI 6= 0 between lens 1 and 2. We also assume than the effective focal
length is 20% longer that the working distance. As for case II in 1. we find for
case I

1

f2
=

1

s′I
− 1

f1 − dI
, (S6.20)

1

1.2s′I
=

1

fI
=

1

f1
+

1

f2
− dI
f1f2

. (S6.21)

In case II with dII, we have
1

f2
=

1

s′II
− 1

f1dII
, (S6.22)

1

1.4s′II
=

1

fII
=

1

f1
+

1

f2
− dII
f1f2

. (S6.23)

Equations (S6.20) and (S6.22) yield

dI = f1 −
f2s
′
I

f2 − s′I
,

dII = f1 −
f2s
′
II

f2 − s′II
.

Accordingly, Eqs. (S6.21) and (S6.23) yield

dI = f1 + f2 −
f1f2
1.2s′I

,

dII = f1 + f2 −
f1f2
1.4s′II

.

Elimination of dI and dII leads to

f1 =
1.2f2s

′
I

f2 − s′I
,

f1 =
1.4f2s

′
II

f2 − s′II
.

From these two equations, we obtain

f2 =
(1.2− 1)s′Is

′
II

1.2s′I − 1.4s′II
= −80 mm
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and by re-substitution

f1 =
1.2f2s

′
I

f2 − s′I
= 80 mm .

Finally, we get

dI = 13.33 mm ,

dII = 22.86 mm ,

fI = 480 mm ,

fII = 280 mm .

It is evident that the more realistic solution provides a very different result. The
approximation dI = 0 is thus not acceptable at all. Again, the front lens is the
negative element. If it were the positive lens, a ray expansion would be obtained
at the front lens which would be difficult to correct or would lead to major aber-
rations. In addition, such a configuration would also make the system bigger in
size. In the second example with dI 6= 0, the lenses have to be moved only a much
smaller distance (dI − dII), but also their respective focal lengths.

3. Chromatic aberration:
However, the relative displacement of the lens elements changes the heights of the
marginal ray (see Appendix A) at the front lens. Thus, the paraxial approximation
which we used in the derivation of the cemented achromat is no longer valid.
Strictly speaking, simultaneous chromatic correction and varioscope design is not
possible. If, however, we set a condition for elements which are not positioned
tightly together (as was assumed in the “classic” achromat) such as

φ1
ν1
h21 +

φ2
ν2
h22 = 0 ,

in which h1, h2 are the marginal ray heights, then achromatism is obtained from
the following condition

φ1
ν1

+
φ2
ν2
·
(
h2
h1

)2

=
φ1
ν2

+
φ2
ν′2

= 0 .

Here, ν′2 is the effective Abbe number for material 2. We can derive a condition
for ν′2 which corresponds to the classic achromatism condition

ν′2 = ν2

(
h1
h2

)2

= ν2

(
1− d

f1

)2

> ν2

and can be easily visualized from Figure S6.11.
If a material with the Abbe number ν′2 is thus used for the negative front lens
(chosen, e.g., for marginal ray heights in the middle position), a considerable
reduction of the chromatic aberrations is possible. However, it is advisable to
set this corrective position closer to case II with the shorter working distance
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and larger numerical aperture, as the depth of field is lower and the longitudinal
chromatic aberration is more pronounced in this case. In addition, they have a
stronger image quality degrading effect. We leave it to the reader to use the data
from Problems P6.4 and P6.5 to determine a suitable glass combination and to
calculate the focus for a paraxial ray as a function of the wavelength.

4. Vitro-retinal surgery with wide-angle lens:
We assume (in good approximation) that the eye lens images the fundus approxi-
mately to infinity. Then, for a fundus imaging lens with Doph = 125D, we find

1

s′
= Doph .

Hence, s′ ≈ 8mm, which means that the position of the intermediate plane is
positioned about 8 mm after the wide-angle lens (Figure S6.12).
In the case of a fundus imaging lens with Doph = 60D, we find s′ ≈ 16.7mm.

varioscope

f

varioscope

wide 
�eld lens

s‘

20 mm

24.385 mm

intermediate
image plane

Figure S6.12 Ray diagrams for the optical imaging of a varioscope system.

5. Focus change in vitro-retinal surgery with a wide-angle lens:
The change of the focal length of the varioscope is required to transit from a sharp
image of the cornea to a sharp image of the fundus. Thus, we have

Doph = 125 D : ∆f = 20 mm + s′ = 28 mm ,

Doph = 60 D : ∆f = 20 mm + s′ = 36.7 mm .
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P6.7
Afocal zoom systems

Let us consider an afocal zoom system, as shown in Figure 6.16, with the
focal lengths f1 =f3 =+100mm and f2 =−20mm.
1. What is the condition for afocality in the ABCD matrix notation? What

is the matrix of the overall system for a symmetric setup with equal dis-
tances? Use this arrangement to calculate the distances for the afocal case.
What does the second solution of the equation look like, and why can it
not be used here?

2. The zoom system is longest in the symmetrical case. Calculate the system
length as a function of the focal lengths? What is the system matrix for
the asymmetrical case when decreasing the first distance to L1 =0. How
large is the second distance L2 and the telescope magnification for this
case? What is the general expression used for the overall length Ltot

here?
3. The zoom factor is generally determined by the ratio of the telescopemag-

nifications from the two end positions. What is the zoom factorM for a
symmetrical zoom? What focal lengths should be selected if, for exam-
ple, a zoom with overall length of Ltot =100mm and zoom factorM=9

is required?
4. Let us now look at the above zoom system with optical compensation. In

this case, only the negative lens L2 is displaced by z from its center po-
sition with distances Ls/2. Without the exact compensation, the image
plane does not remain exactly constant. To obtain a finite image posi-
tion, an objective lens with f4 =100mm is mounted on the zoom system.
Compile the paraxial matrix of the system up to the image plane for arbi-
trary z values. To simplify the formulas, f1 =f3 =f4 =f should be used
here.

• What is the condition for the image plane in the matrix calculation?
• What is the expression for the defocussing s′ of the image plane?
• What minimum and maximum values can z technically assume?
• Plot s′ as a function of z.
• At what interval can the negative element be displaced, if the defo-
cussing is not to be greater than 2mm?

Solution:

1. The symmetric case is shown in Figure S.13. For the angle behind the system, the
general matrix equation yields

θ′ = Cx+Dθ .
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Ls /2 Ls /2

L1 L2 L3

Figure S6.13 Symmetric configuration of a zoom system consisting of three lenses.

A system is afocal if θ′ = 0 is valid for all xwith θ = 0. This condition is fulfilled
for C = 0 only. The system’s matrix results from(

As Bs

Cs Ds

)
=(

1 0

−D1 1

)
·
(

1 Ls

0 1

)
·
(

1 0

−D2 1

)
·
(

1 Ls

0 1

)
·
(

1 0

−D1 1

)
.

The elements in detail read

As = 1− LsD1 −
1

2
LsD2 +

1

4
L2
sD1D2 ,

Bs = Ls − L2
sD2 .

Cs = −2D1 −D2 +
1

2
Ls · (2D2

1 + 2D1D2)− 1

4
L2
sD2

1D2 ,

Ds = 1− LsD1 −
1

2
LsD2 +

1

4
L2
sD1D2 .

From Cm = 0, a quadratic equation results for the distance given by

1

2
Ls =

D2
1 +D1D2 ±D2

1

D2
1D2

.

The first solution is the relevant one here and delivers

1

2
Ls,1 =

2D1 +D2

D1D2
= f1 + 2f2 = 60 mm .

The second solution yields 1
2Ls,2 = f1 and has no physical meaning. In this case,

the negative middle element is exactly in the focus of the first element and, as a
field lens, does therefore not act on the marginal ray. This is a zoom system with
image inversion and a long overall length and is thus not desirable.

2. The overall length is twice the distance in the symmetric position (for which the
magnification is evidently equal to 1):

Ltot = Ls = 2f1 + 4f2 = 120 mm (S6.24)
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In the asymmetrical case with d1 = 0, the system matrix is given by(
Aas Bas

Cas Das

)
=

(
1 0

−D1 1

)
·
(

1 Las

0 1

)
·
(

1 0

−D1 −D2 1

)
=

(
1− Las · (D1 +D2) Las

−2D1 −D2 + LasD1 · (D1 +D2) 1− LasD1

)
.

The afocal case is again obtained for Cas = 0 and then yields the distance which
equals the overall length

Las =
2f1f2 + f21
f1 + f2

= 75 mm . (S6.25)

Hence, in the symmetrical case, the overall length decreases from 120 mm to 75
mm. In this position, the telescope magnification is

Γmin =
θ′

θ
= Das = 1− LsD1 = − f2

f1 + f2
= 0.25 . (S6.26)

It can be easily calculated that in the other asymmetrical case (i.e., L2 with
distance 0 to L3) a magnification of Γmax = − f1+f2f2

= 4 results (inverted tele-
scope).

3. With Γmax = 1/Γmin and Eq. (S6.26), the following relation holds for the zoom
factorM :

M =
Γmax

Γmin
=

(
f1 + f2
f2

)2

= 9 .

From this equation with
√
M = −

(
f1+f2
f2

)
and Eq. (S6.24), the focal lengths

and the zoom factors as a function of the length Ls = 100mm are obtained via

f1 =
Ls(
√
M + 1)

2 · (
√
M − 1)

= 100 mm ,

f2 = − Ls

2 · (
√
M − 1)

= −25 mm .

This results is an asymmetric (minimum) length of the telescope

Las =
2f1f2 + f21
f1 + f2

= 66.7 mm .

The focal lengths can also be determined from the minimum length Las as

f1 =
Las
√
M√

M − 1
= 100 mm ,

f2 =
Las
√
M

1−M = −25 mm .
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It is instructive for the reader to calculate the position of the lenses L1 and L2 as
a function of any magnification Γ = θ′/θ = Da from the ABCD matrix. To this
end, we have to use the following matrix:(

As Bs

Cs Ds

)
=(

1 0

−D1 1

)
·
(

1 L23

0 1

)
·
(

1 0

−D2 1

)
·
(
a L12

0 1

)
·
(

1 0

−D1 1

)
, (S6.27)

in which L12, L23 are the distances between L1 and L2, and L2 and L3, respec-
tively. Here, we only provide the result (see also [14] in Appendix A) and advise
the reader to plot the distances L12 and L23 for various Γ according to

L12(Γ) =
1

D1
· Γ · Γmax − 1

Γ · (Γmax + 1)
,

L23(Γ) =
1

D1
· Γmax − Γ

Γmax + 1
.

L2L1 L3

LS  / 2

image
plane

z

L4

Figure S6.14 Schematic structure of the 4-lens system.

4. The arrangement with an additional objetive lens in shown in Figure S6.14. With
Ls/2 = f + 2f2, the system’s matrix is determined by

M =

(
1 f

0 1

)
·
(

1 0
−2
f 1

)
·
(

1 Ls
2 − z

0 1

)
·
(

1 0
−1
f2

1

)
·
(

1 Ls
2 + z

0 1

)
·
(

1 0
−1
f 1

)

=

(
−2 + Ls

f2
+ Ls

f −
f
f2
− L2

s
4f ·f2 −

z2

f ·f2 −Ls +
L2

s
4f2
− f ·Ls

2f2
− z2

f2
− z·f

f2

− 3
f −

1
f2

+ 3Ls
2f ·f2 −

z
f ·f2 + 2Ls

f2 −
L2

s

2f2·f2 + 2z2

f2·f2 1 +
L2

s
2f ·f2 −

Ls
2f2
− 2z2

f ·f2 −
z
f2

)

=

(
z2

f ·f2 − z
2

f2
− z·f

f2

− 1
f −

z
f ·f2 + 2z2

f2·f2 7 + f
f2
− 8f2

f −
2z2

f ·f2 −
z
f2

)
. (S6.28)

Here, the condition for the image position results from x′ = 0 and is valid for all
x with θ = 0. Because of

x′ = Ax+Bθ = Ax ,

θ′ = Cx+Dθ = Cx ,
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this means that A = 0 must be fulfilled. According to the above expression, this
only holds for z = 0. The defocussing in the image space results with θ = 0 from

s′ =
x′

θ′
=
A

C
=

f · z2

2z2 − zf − f · f2
. (S6.29)

|z| cannot be larger than Ls/2 = 60mm, as the element would collide with L3 at
this boundary. The defocussing s′ as a function of z is plotted in Figure S6.15.

s (
m

m
)

z (mm)

0

20

40

60

80

100

120

140

-60 -40 -20 0 20 40 60-20

Figure S6.15 The defocussing s′ as a function of the displacement of the lens center
position z according to Eq. (S6.29).

From Eq. (S6.29) and with s′max = 2mm, we finally obtain

z =
s′ · f ±

√
s′2f2 + 4s′f · f2 · (2s′ − f)

2 · (2s′ − f)
. (S6.30)

Through substitution, we find the values zmin = −7.6mm and zmax = +5.5mm.
This example illustrates how important and effective the displacement of the com-
pensator is for fixating the image plane. From Eq. (S6.28), we can again calculate
the necessary displacement of the compensator if we change the matrix element
as in Eq. (S6.27), or we allow a compensating behavior of Lens L4 by providing
additional space and movability (change ABCD matrix!).



30 Solutions to Problems – Optical Devices in Ophthalmology and Optometry

P6.8
Video documentation

In camera and video documentation the magnification of the surgical micro-
scope is given by

βF =
fadp Γ

fobj
, (6.82)

where fadp is the focal length of a camera adapter which is generally ar-
ranged directly after the zoom system. Typical values lie at around 100mm.
1. Discuss the meaningfulness of using an HDTV video recorder. The two

HDTV-standard image resolutions are 1280×720 pixels and 1920×1080

pixels, in the full format. The width-to-height ratio of the image is 16:9.
The size of CCD image sensors is often specified in inches. Common
sizes for professional video cameras are 2/3′′ and 1/2′′. The description
of the chip sizes was derived from the external diameter of the old picture
tubes. A 1′′ CCD chip has, by definition, the same image diagonal as
a 1′′ tube. The length of the image diagonals (8mm for 1/2′′ CCDs)
determines the size of the photosensitive surface.

2. How can you increase the depth of field in video documentation? What
drawback does this entail?

Solution:

1. The following pixel sizes are obtained for the detectors:

Size Diagonal (mm) Side (mm) Pixel count Pixel size (µm)

1/2 ” 8 6.97 / 3.92 1280 × 720 5.4
1920 × 1080 3.6

2/3” 10.67 9.29 / 5.23 1280 × 720 7.2
1920 × 1080 4.8

We have to understand that the numerical aperture of the objective lens is de-
magnified by the photo magnification given in Table S6.4. The values result for
the numerical aperture of the objective, with the photo magnification

βF =
fadapter
fobj

· Γ , (6.82)

objective focal length fobj, the zoom factor Γ, the numerical aperture of the mi-
croscope for a given object NAobj, and the numerical aperture at the camera port
NAF = NAobj/βF. Thus, the spatial resolution at the sensor is reduced accord-
ing to Eqs. (A78) and (6.10) with fadapter = 100mm.
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Table S6.4 Typical parameter set of surgical microscopes.

fobj (mm) Γ NAobj βF Numerical Optical Optical
aperture at resolution resolution at
the sensor obtained (µm) the sensor (µm)

200 2.5 0.025 1.25 0.020 16.8 16.8
300 2.5 0.017 0.833 0.020 16.8 16.8
400 2.5 0.013 0.625 0.020 16.8 16.8
200 0.4 0.038 0.20 0.19 1.8 1.8
300 0.4 0.025 0.133 0.19 1.8 1.8
400 0.4 0.019 0.10 0.19 1.8 1.8

2. By a comparison with the pixel sizes of the HDTV sensors, it becomes obvious
that the numerical aperture and, hence, also the spatial resolution at the sensor
only depend on the settings of the zoommagnification and the adapter focal length,
but not on the focal length of the objective lens. For higher magnifications, the
HDTV sensor resolution is not attained optically. However, HDTV quality is eas-
ily achieved for the low and medium magnifications. Therefore, if the zoom range
is adjusted, HDTV quality is obtained from about Γ < 0.8× to 1.6× on the choice
of sensor for zoom magnifications. The depth of field can be increased by stop-
ping down the adapter aperture of the video system. However, lateral resolution
and brightness are lost as a consequence of this.

P6.9
Keratometer

1. Please derive the keratometer equation for the corneal radius of curvature
given in Eq. (6.50).

2. The cornea of a patient with a radius of curvature of rC = 7.8mm is
analyzed with a keratometer. The test mires of the keratometer are located
at a distance of 30 cm in front of the corneal vertex. At which distance
behind the cornea do we find the reflex images of the mires?

3. We now look at the reflex images with a telescope. The sizes of the reflex
images and the original size of the mires shall be equal. How must the
telescope magnification be chosen to realize this?

Solution:

1. The keratometer equation can be derived from Eqs. (6.48) and (6.49). Here, we
do not consider the usual sign convention, since this is more or less the common
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practice in the keratometer literature. In

1

s′
=

1

s
+

1

f ′
, (6.48)

y′

y
=
s′

s
, (6.49)

we use the approximations y � y′ as well as s� s′. In addition, we assume the
cornea to be a reflecting spherical mirror for which f ′ = rC/2. Thus, it follows
that

1

s′
≈ 1

f ′
⇒ f ′ = s′ =

rC
2

=
sy′

y

⇒ rC =
2sy′

y
. (S6.31)

Note that s > 0 and s′ < 0 so that f ′ < 0 and rC < 0. Nevertheless, the radius of
curvature rC is normally specified as a positive value.

2. With f ′ = rC/2 = 3.9 mm and s = 300 mm, we find s′ = 3.85 mm. As
a consequence, we observe the reflex images of the mires 3.85mm behind the
vertex of the cornea.

3. For the corneal system, we have according to Eq. (6.49)

β =
s′

s
= 0.0128× .

The test mires are de-magnified by the corneal imaging system. As the magnifi-
cation β′ of the telescope system must compensate for this de-magnification, the
telescope must provide

β′ =
1

β
= 78× .
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P6.10
Principle of topometry

Approximate an optical system as a spherical lens with a refractive index of
1.5 and a radius of 25mm. Then, superimpose on this system a cylindrical
optical system with an axis inclined by 30° with respect to the vertical line
and an additional radius of 85mm.
1. Calculate (numerical-graphical) a topometric image for an exactly axial

alignment. Assume reasonable radii and reasonable stripe distances for
the rings of the Placido disk.

2. How does this image change if the optical system is tilted by an angle α?
3. Replace the spherical lens with a parabolic aspherical lens, whereby the

radius of curvature of one axis is equal to the radius of the spherical lens.
How does the topometric image change?

Solution:

1. The superposition of the spherical surface and the cylindrical surface, rotated by
30° in azimuthal direction, yields the following representation for the height topol-
ogy z(x, y) of the reflecting surface (including both effects):

z(x, y) = rs

√
1−

(
x2 + y2

r2s

)
+ rc

√
1−

(
(x cosφ+ y sinφ)2

r2c

)
. (S6.32)

Here, the spherical radius rs = 25mm and the cylindric radius rc = 85mm, with
the latter being effective under an azimuthal angle of φ in this case. The terms
in the brackets are the coordinates rotated by φ. The section in the x, y range
of −10mm to +10mm is considered for the discussion. Figure S6.16 shows the
height image as a 3D plot. The astigmatic portion is barely detectable in the height
image.
In order to generate the reflected Placido rings, we consider a ring pattern of 10
equidistant rings at a distance of 1.0mm from each other having awidth of 0.2mm.
The generation of the rings is simulated by letting a collimated beam impinge on
the surface and recording the reflected light on a projecting screen. This principle
is depicted in Figure S6.17.
The image recorded with the camera was generated by superimposing the effect of
surface tilt on the incident ring pattern (Figure S6.18, image in the middle). The
deflection is modeled by means of the partial derivatives of the function z(x, y).
The inclination of the surface z(x, y) (written only for the x component) is given
by

tanα′ =
∂z

∂x
. (S6.33)

Taking into account that negative α′ lead to positive deflections 2α, we can use

tanα = tan(−α′) = − ∂z
∂x

. (S6.34)



34 Solutions to Problems – Optical Devices in Ophthalmology and Optometry

Figure S6.16 Combination of a spherical and cylindric surface shown in a 3D plot.

Therefore, the transversal deflection on the screen is

∆x′ = (s+ r − z) tan(2α) ,

= (s+ r − z)
(

2 tanα

1− tan2 α

)
,

= (s+ r − z)
(
−2∂z/∂x

1− (∂z/∂x)2

)
. (S6.35)

From the representation of the surface according to Eq. (S6.35), the components
of the derivative are given by

∂z

∂x
= − x√

r2s − (x2 + y2)
− cosφ · (x cosφ+ y sinφ)√

r2c − (x cosφ+ y sinφ)2
, (S6.36)

∂z

∂y
= − y√

r2s − (x2 + y2)
− sinφ · (x cosφ+ y sinφ)√

r2c − (x cosφ+ y sinφ)2
, (S6.37)

such that the following transformation is obtained for the camera image using an
arbitrary scaling factor (depends on the imaging relationships of the camera):

x′ = x+ ∆x′ , y′ = y + ∆y′ . (S6.38)

Substituting Eqs. (S6.35), (S6.36), and (S6.37) into (S6.38) yields a rule for com-
puting the simulation of the signal given by

x′ = x− 2s
(

1 +
r − z
s

)
· ∂z/∂x

1− (∂z/∂x)2
, (S6.39)

y′ = y − 2s
(

1 +
r − z
s

)
· ∂z/∂y

1− (∂z/∂y)2
. (S6.40)
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Figure S6.17 Geometry of a collimated incident light beam which is reflected to a
projection screen.

Figure S6.18 Numerically calculated height levels of a surface (left), the input geometry of
rings (middle), and the resulting camera image of the rings (right).

In practical applications, it is often possible to use the approximations r− z � s.
This simplifies Eqs. (S6.39) and (S6.40) to

x′ = x− 2s · ∂z/∂x

1− (∂z/∂x)2
, (S6.41)

y′ = y − 2s · ∂z/∂y

1− (∂z/∂y)2
. (S6.42)

Figure S6.18 shows the numerically calculated levels of the surface (left), the
input geometry of the rings (middle), and the camera image of the rings (right).
It is evident that the astigmatic portion leads to the marked elliptical deformation
of the rings. The spherical curvature portion causes the originally equidistant
rings to become non-equidistant. The distances between the rings become larger
further out, that is, for larger x, y values. Obviously, the topometry is much more
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sensitive to changes of the surface (curvatures) than the height measurement. This
is due to the fact that the topometry is based on the derivatives of the surface. The
derivative defines the angle of inclination of the surface with respect to the in-
cident beam. According to the law of reflection, this is crucial for beam deflection.

x
x = 0

surface 
z(x,y)

signal light

incident light

projection screenz

s

α‘

x‘

Δx‘

d

α+ψ

ψ

ψ

x0 xp

d‘

Δd‘

r-z(x0 ,y)

Figure S6.19 Topometric geometry for a tilted system against the optical axis of the lens
(angles are exaggerated for clarity).

Figure S6.20 Ring pattern for a tilted topometry geometry.

2. Tilting by ψ = 10◦ in x direction around the y-axis leads to a somewhat more
complicated geometry. From the geometry in Figure S6.19, we can derive

∆x′ = d′ tan(2(α+ ψ))
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with tanα = − ∂z∂x at x = xp. Furthermore, we have

d = s+ (r − z(x0, y) + x0 · tanψ) ,

cosψ =
d

d′ −∆d′
≈ d

d′
,

xp ≈ x0 + d′ sinψ ,

x0 = x′0 cosψ

⇒ xp ≈ x′0 cosψ + d tanψ .

We use again the identities

tan(2(α+ ψ)) =
2 tan(α+ ψ)

1− tan2(α+ ψ)
,

tan(α+ ψ) =
tan(ψ) + tan(α)

1− tan(α) · tan(ψ)

and obtain for the deflection

∆x′ =
2d

cosψ
· tan(ψ) + tan(α)

1− tan(α) · tan(ψ)
· 1

1−
(

tan(ψ)+tan(α)
1−tan(α)·tan(ψ)

)2 , (S6.43)

with d = s + (r − z(x′0 cosψ, y) + x′0 sinψ), tanα = −∂z/∂x at x = xp,
and xp = x′0 cosψ + d tanψ. It should be noted that x′0 is the x-position of
the impinging beam in the camera plane, xp the corresponding x-coordinate of
the point of reflection on the surface, and ∆x′ the deflection as measured in the
(tilted) camera plane. As we can see from Figure S6.20, the rings and the center
of the pattern are shifted. The distances become considerally more one-sided in
x direction.

3. If a parabolic rotationally-symmetric portion with an identical summit osculating
radius rs is present, the shape of the surface is given by

z(x, y) =
x2 + y2

2rp
+ rc

√
1−

(
(x cosφ+ y sinφ)2

r2c

)
(S6.44)

and the derivatives by

∂z

∂x
= − x

rp
− cosφ · (x cosφ+ y sinφ)√

r2c − (x cosφ+ y sinφ)2

∂z

∂y
= − y

rp
− sinφ · (x cosφ+ y sinφ)√

r2c − (x cosφ+ y sinφ)2
. (S6.45)

Figure S6.21a shows the surface relief and ring geometry for this case (rc →
∞). The significant difference as compared to the spherical surface is that the
rotationally-symmetrical portion generates equidistant rings further out than in
the spherical case.
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Figure S6.21b depicts the surface relief and ring geometry for a “different surface”
of parabolic and a spherical surface to equal radii. This shows again the sensitivity
of the topometry/deflection measurement.
It is instructive to calculate the deflected ring position as a function of the in-
coming position for both surfaces (with the assumption that rs = rp = r). It is
sufficient to do this for the x coordinate. We start for the sphere from Eq. (S6.42b),
where we had

x′ = x− 2s
(

1 +
r − z
s

)
· ∂z/∂x

1− (∂z/∂x)2
,

∂z

∂x
= − x/r√

1− (x2/r2)
= − β√

1− β2

in which β = x/r. Thus, we can write

x′ = x+ 2s
(

1 +
r − z
s

)
β√
1−β2

1−
(

β√
1−β2

)2

 .

With z = r
√

1− β2, we obtain

x′

r
= β′ = β + 2

s

r

(
1 +

r · (1−
√

1− β2
s

)
β√
1−β2

1−
(

β√
1−β2

)2

 .

For the parabola, we start from Eq. (S6.44b), where

x′ = x+ 2s
(

1 +
r − z
s

)
· ∂z/∂x

1− (∂z/∂x)2
,

∂z

∂x
= −x

r
= −β .

Thus, we can write

x′ = x+ 2s
(

1 +
r − z
s

)(
β

1− β2

)
.

With z = r(1− 1
2β

2), we obtain

x′

r
= β′ = β + 2

s

r

(
1 +

rβ2

2s

)
· β

1− β2
.

Figure S6.22 shows the deflected ring position as a function of the incoming po-
sition for both surfaces. Obviously, for small positions (close to the axis) and for
both surfaces, we obtain equidistant reflected rings. The spherical surface “de-
parts” much faster from this picture with equidistant rings.
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Figure S6.21a “Placido-like” plot of a parabolic surface.

Figure S6.21b “Difference plots” between a spherical and a parabolic surface of equal
radii.



40 Solutions to Problems – Optical Devices in Ophthalmology and Optometry

0

10

20

30

40

βsphere

βparabolade
�e

ct
ed

 ri
ng

 p
os

iti
on

incoming position

Figure S6.22 “Camera ring position” as a function of incoming ring radius.
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P6.11
Slit lamp

1. As an alternative to a telescopic system, we can also implement a Gree-
nough miscroscope to the observation path of a slit lamp. The total mag-
nification of the Greenough miscroscope is given by the product of the
magnification of the objective lens βobj and the magnification of the eye-
pieces βep. Show that the magnification of the objective lens is given by
βobj =Ltub/fobj, where Ltub denotes the optical tube length.

2. Slit lamp microscopes usually have a numerical aperture of NA = 0.05.
Let us assume that imaging aperture and illumination aperture are equal.
Calculate the microscope resolution for a wavelength of λ=550 nm. Cal-
culate the minimum and maximum usable magnifications βum,min and
βum,max, respectively (Section 6.2.2). Discuss the result with reference
to typical magnifications used in slit lamp microscopes.

Solution:

1. The lateral magnification is given by

βobj = −s
′

s
.

With the paraxial imaging equation (A14), we have

1

s′
− 1

s
=

1

fobj
.

Consequently, we obtain

βobj = s′
(

1

fobj
− 1

s′

)
=

s′

fobj
− 1

=
s′ − fobj
fobj

.

Since the optical tube length is Ltub = s′ − fobj, it follows that

βobj =
Ltub

fobj
.

According to Eq. (6.8), the lateral spatial resolution of a microscope is determined
by

∆(x, y)mic =
1.22λ

NAmic + NAc
.
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λ denotes the wavelength of the illuminating light and NAmic the numerical aper-
ture of themicroscope. WithNAmic = NAc = 0.05 and λ = 550 mm = 0.55µm,
we get

∆(x, y)mic = 0.61
0.55

0.05
= 7 µm .

The lateral spatial resolution of the microscope is approximately 7 µm.

2. According to Eq. (6.12), the range of usable magnification is given by

500 NAmic ≤ βum ≤ 1000 NAmic .

With NA = 0.05, we find

βum,min = 25× and βum,max = 50× .

The magnification normally used in slit lamp microscopes are in range of 10× to
25×. At values below 25×, the theoretically possible resolution of the microscope
is not exhausted – in favor of greater brightness of the image.

P6.12
Scheimpflug principle

Imagine yourself standing in front of the highest church tower in Europe with
your medium-format camera (6 cm × 6 cm) in hand. The market square in
front of the tower allows you to be at a distance of 100m from the foot of
the tower. You have two objective lenses with focal lengths of f1 = 50mm
and f2 = 85mm to choose from. The F-number of the objective lenses is
fi/dpupil = 1.4 in each case; with the diameter of the entrance pupil dpupil.
You also have a bellow device which allows you to tilt the camera objective
lens with respect to the film plane. Select the optimal arrangement allowing
the church tower to be image-filling and in sharp focus, if possible, along its
entire height.

Solution:

The parameters, h = 161 m (object height of church tower, “Ulmer Muenster”),
su = 100m (distance from foot point), f , and h′ (size of the film format) are shown
in Figure S6.23a. It must be noted that, in the film diagonal, h′ = 6 cm or h′ =√

2 ·6 cm = 8.48 cm must be used, depending on the azimuth rotation of the camera.
This rotation of the film format along with the camera is schematically shown in
Figure S6.23b. The rotation can be used to align the church tower along the diagonal
of the film format which allows for a gain of 41% in length.
As an additional condition, the church tower of height h is perpendicular to the dis-
tance line su. This is for instance not exactly true in the case of the tower of Pisa and
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Figure S6.23a Scheimpflug arrangement to photograph a church tower.

then depends on from which side the image is taken.
The selected parameter in these considerations is the angle of inclination θ of the
objective lens axis with respect to the horizontal line. The following consideration
consists of calculating the maximal height of the object that can be imaged on the film
(either on 6 cm or on 8.48 cm edge length) as a function of the angle of inclination
while taking the secondary condition of the tilt angle θ′ into account.
The following geometric relationships are evident from Figure S6.23a:

• Object focal intercept along the tilted camera axis:

s =
su

cos θ
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Figure S6.23b Rotation of the format to fill the entire film plane.

• Distance of the point of intersection Q of the main plane and object planes:

L =
su

sin θ
.

• Lens equation with all distances being considered positive (real image):

1

f ′
=

1

s′
+

1

s

⇒ s′ =
f ′ · s
s− f ′ =

f · su
su − f · cos θ

.

The tilt angle θ′ of the film plane with respect to the main plane of the objective lens
as a function of the angle on inclination θ is given by

tan θ′ =
s′

L
=

sin θ

su
· f ′ · su
su − f ′ · cos θ

=
f ′ · sin θ

su − f ′ · cos θ
. (S6.46)

The distance s′u can be calculated by means of an auxiliary distance d via

d =
su

tan θ
=

su + s′u
tan(θ + θ′)

,

s′u = su ·
(

tan(θ + θ′)
tan θ

− 1

)
. (S6.47)

The field angle w is determined by

cotw =
su
h

. (S6.48)
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Using the auxiliary angle

β = 90◦ − (θ + θ′) ,

cosβ = sin(θ + θ′) ,

sinβ = cos(θ + θ′) ,

and considering the triangle PGZ with an auxiliary distance y that is perpendicular
to s′u and distance x leads to

y = (s′u − x) tanw = x · tanβ ,

x = s′u ·
tanw

tanw + tanβ
.

Accordingly, the image height is

h′ =
x

cosβ
=

s′u
cosβ

· tanw

tanw + tanβ
=

s′u
cosβ + cotw · sinβ

=
su

sin(θ + θ′) + cotw · cos(θ + θ′)
.

Substituting Eqs. (S6.46) and (S6.47) yields

h′ =
su

sin(θ + θ′) + su/h · cos(θ + θ′)
·
(

tan(θ + θ′)
tan θ

− 1

)
,

and resolving with respect to h finally leads to

h =
su · cos(θ + θ′)

su/h′ · (cot θ · tan(θ + θ′)− 1)− sin(θ + θ′)
. (S6.49)

Varying the angle θ, using Eq. (S6.46) to calculate the angle θ′ and Eq. (S6.49) to
calculate the maximal attainable object height, the behavior for both focal lengths in
the case of the diagonal format with h′ = 8.48 cm is illustrated in Figure S6.24a.
The maximal possible object height for the objective lens with f ′ = 85mm is 132m,
which is not enough for the Ulmer Muenster (161 m). Evidently, using the objective
lens with f ′ = 50mm in the 45◦ azimuth angle position allows full imaging of the
object at θ = 59.92◦. This is based on the assumption that the width of the church
tower is negligibly small. The additional required inclination of the film plane is
θ′ = 0.0248◦. This value is very small and considering the finite depth of field of the
image, this tilting could be omitted.
If the azimuthal rotation is omitted in order to cover the entire base of the church,
h′ = 6 cm must be used. This leads to the curves shown in Figure S6.24b. Again,
there is no chance to cover the object completely using the objective lens with f =

85 cm. Two solutions are obtained for the objective lens with f ′ = 50mm, that is for
the angles

θ = 15.42◦, θ′ = 0.0076◦ ,

and
θ = 42.70◦, θ′ = 0.0194◦ .
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Figure S6.24a Object height h versus the angle of inclination θ for two focal lengths
f = 50 mm and f = 85 mm and for a diagonal format with h′ = 8.48 cm.

Actually, using the diagonal format is not particularly reasonable. It becomes ob-
vious from the real relationships that the width of the Ulmer Muenster at its base
is not negligible (Figure S6.24c). Because of the distortion typically observed for
Scheimpflug setups, the object appears to have a width of 108m, meaning that a
square format is also filled by 67% in its other dimension.
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Figure S6.24b Object height h versus the angle of inclination θ for two focal lengths
f = 50 mm and f = 85 mm and for a format of h′ = 6 cm.

Figure S6.24c Photograph of the Ulmer Muenster taken by using a Scheimpflug camera
setup.
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P6.13
Direct ophthalmoscopes

In direct ophthalmoscopy, the maximum angular field of view for an em-
metropic eye is given by

αfov =
dpupil + dphys

Lpp
, (6.83)

where dpupil denotes the pupil diameter of the patient, dphys the pupil dia-
meter of the physician, and Lpp the distance between the patient’s and the
physician’s pupil. Verify this relation by means of a drawing.

patient physician

dpupil dphys

L1 L2

θ/2
θ

Figure S6.25 Ray diagram to illustrate the optical paths of a direct ophthalmoscope.

Solution:

We start with

L1 + L2 = Lpp ,

L1 =
dpupil

2 tan(θ/2)
,

L2 =
dphys

2 tan(θ/2)
.

Therefore, it follows that

L1 + L2 = Lpp =
dpupil + dphys

2 tan(θ/2)
.

In paraxial approximation, the angle is given by

θ

2
=
dpupil + dphys

2Lpp

⇒ θ =
dpupil + dphys

Lpp
= αfov ,
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which is equal to the maximum angle of the field of view.
Comment: dphys can also represent the diameter of the observation aperture of the
ophthalmocsope, depending on which value is smaller.

P6.14
Indirect ophthalmoscopes I

A patient with emmetropic eyes (refractive power of eye Deye≈60D) is ex-
amined with an indirect ophthalmoscope which uses an ophthalmoscopy lens
with a refractive power of 13D. The free diameter of the ophthalmoscopy
lens is doph =40mm. The physician observes the intermediate image of the
fundus from a distance of 40 cm.
1. At which distance from the patient’s eye (pupil plane) must the ophthal-

moscopy lens be placed?
2. How large is the field of view dfov on the retina?
3. How large would the field of view be for a direct ophthalmoscope (same

distance between patient and physician; pupil diameter of patient is 7mm;
pupil diameter of physician is 3mm)?

Solution:

intermediate
fundus image

h h‘

chief ray

patient physician

s‘

Lwd f‘oph

s‘nv

opthalmoscopy lens

observation

dfov

αfovp I

image size of
patient‘s pupil 

doph

illumination

Figure S6.26 Ray diagram of an indirect opthalmoscope which shows the illumination
beam path (red) and the observation path (yellow).
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1. As the near-viewing distance s′nv we use the distance of the intermediate image to
the observer (40 cm). Thus, we have

Doph =
1

f ′oph
= 13 D ,

f ′oph =
1

Doph
= 7.7 cm ,

Deye =
1

feye
= 60 D .

In a 4-f system, the distance of ophthalmoscopy lens from the physician’s eye is
therefore

s′ = f ′oph + s′nv = 47.7 cm .

In order to have the patient’s pupil imaged into the physician’s pupil, we calculate
with lens equation (A14)

1

s′
− 1

Lwd
= Doph ,

⇒Lwd ≈ −9.2 cm .

The opthalmoscopy lens must thus be placed 9.2 cm away from the patient’s pupil
plane.

2. With the parameters

doph = 4 cm ,

Lwd = −9.2 cm ,

we have – according to Eq. (6.72) – the field of view given by dfov ≈ αfov/Deye

and on the other hand, from Figure S6.26, the relation

αfov ≈
doph
Lwd

= 0.435 rad .

Thus, it follows that

dfov ≈
αfov

Deye
=

0.435

60 D
≈ 7.25 mm .

3. We compare this with a direct ophthalmoscope (see Problem P6.13) and obtain

Lpp = Lwd + s′ = 56.9 mm ≈ 57 mm,

αfov =
dpupil + dphys

Lpp
=

7 mm + 3 mm

57 mm
≈ 0.175

⇒ dfov ≈
αfov

Deye
≈ 0.3 mm .

Hence, in a direct ophthalmoscope, the field of view is about 24× smaller.



Optical Visualization, imaging, and Structural Analysis 51

P6.15
Indirect ophthalmoscopes II

An eye is examined with an indirect ophthalmoscope. The distance between
patient and physician is 50 cm and the ophthalmoscopy lens is placed at a
distance of 5 cm in front of the patient’s eye.
1. Determine the required refractive power of the ophthalmoscopy lens.
2. Calculate the diameter of the image of the patient’s pupil (originally

4mm) in the plane of the physician’s pupil.
3. At which magnification does the physician observe the fundus (refractive

power of patient’s eye Deye≈60D)?

Solution:

1. We have

Lwd = 5 cm ,

Lpp = 50 cm ,

s′ = Lpp − Lwd = 45 cm .

Using the lens equation leads to

1

f
=

1

s′
+

1

s

⇒ 1

f
=

1

s′
+

1

Lwd
=

2

9
.

Therefore, it follows that f = 4.5 cm. The power of the ophthalmoscopy lens is
thus

Doph =
1

f
=

2

9 cm
=

2

9× 10−2 m
= 22.2 D .

2. From Figure S6.26, we find the relation

s′

Lwd
=
dimage

dpupil

⇒ dimage = 36 mm .

The diameter of the image of the patient’s pupil (which is originally 4mm) in the
plane of the physicians’s pupil appears to be 36mm.

3. The magnification of an indirect ophthalmoscope is given by Eq. (6.73) and has a
value of

β = −Deye

Doph
= − 60 D

22.2 D
= −2.702× .

Thus, the fundus can be viewed with a magnification of about 3×.
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P6.16
Indirect ophthalmoscopes III

The fundus of a patient shall be examined with an indirect ophthalmoscope.
The pupil diameter of the patient has been enlarged to 7mm. The ophthal-
moscopy lens has a refractive power of 30D and is placed at a distance of
50 cm in front of the physician’s eye. The physician has an interpupillary
distance of PD = 65mm. Is it possible for the physician to perceive a vir-
tual stereoscopic image of the patient’s fundus or does he require an optical
device which effectively reduces PD?

Solution:

We start with

s′ = 50 cm ,

dpupil = 7 mm ,

Doph =
1

f
= 30 D ,

PD = 65 mm .

Inserting these values into the the paraxial lens equation (A14) leads to

1

s′
− 1

Lwd
= Doph ,

1

Lwd
=

1

s′
−Doph = −28 m−1 ,

Lwd =
−1

28 m
= −3.6 cm .

The transverse magnification is calculated, according to Eq. (A15), to

β =
s

s′
=

s′

−Lwd
= − 50 cm

3.6 cm
= −13.9× ≈ 14× .

Thus, the diameter of the image of the patient’s pupil in the observer’s pupil results
as

d′pupil = βdpupil ≈ 14 · 7 mm = 98 mm .

The diameter of the image of the patient’s pupil in the observer plane is thus larger
than his pupillary distance PD. This allows the physician viewing the patient’s retina
simultaneously with both eyes (binocular vision). He thus has a stereoscopic im-
pression of the patient’s fundus. An additional optical device to reduce the PD is
not required. In effect, the physician actually “does” a so-called “pupil splitting” by
selecting a pupil range out of the aerial image plane.
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